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ABSTRACT. Results analogous to those proved by Rubio de Francia
[28] are obtained for a class of maximal functions formed by dilations
of bilinear multiplier operators of limited decay. We focus our attention
to L2×L2 → L1 estimates. We discuss two applications: the bounded-
ness of the bilinear maximal Bochner-Riesz operator and of the bilinear
spherical maximal operator. For the latter we improve the known results
in [1] by reducing the dimension restriction from n≥ 8 to n≥ 4.

1. INTRODUCTION

Coifman and Meyer [6, 8, 7] initiated the study of bilinear singular in-
tegrals and set the cornerstone of a theory that has recently flourished in
view of the breakthrough results in [24, 25] and of the foundational work
in [20, 23]. The study of multipliers of limited decay in the bilinear setting,
such as of Mihlin-Hörmander type, was initiated in [31] and pursued fur-
ther in [10, 18, 19, 27] and other works. Many of these results have found
weighted extensions in terms of the natural multilinear weights introduced
in [26]. Meanwhile, the simple characterization of multipliers bounded on
L2 does not have a bilinear analogue; see [2] and [16].

In this work we investigate the L2×L2 → L1 boundedness of maximal
operators related to bilinear multipliers with limited decay. This line of in-
vestigation was motivated by the study of the bilinear spherical maximal
operator introduced in [11] and further studied in [1]; another bilinear ver-
sion of the spherical maximal operator is studied in [21].

The spherical maximal operator was shown to be Lp bounded by Stein
[29] in dimensions n ≥ 3 (see also [30, Chapter XI]) but its planar version
(n = 2) was completed by Bourgain [4]. Rubio de Francia [28] introduced
a different approach to study this operator in dimensions n ≥ 3 and proved
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the following theorem concerning general maximal functions that include
the spherical maximal operator.
Theorem ([28, Theorem B]). Let s be an integer with s > n/2, let a > 1/2,
and suppose that m is a function of class Cs+1(Rn) that satisfies

|Dαm(ξ )| ≤C|ξ |−a for all |α| ≤ s+1.

Then, T ∗m( f ) = supt>0 |(m(t·) f̂ )∨| is bounded on Lp(Rn) for

qa =
2n

n+2a−1
< p <

2n−2
n−2a

= ra

(with the understanding that qa = 1 if a > (n+1)/2 and ra = ∞ if a≥ n/2).
Here f̂ is the Fourier transform of f given by f̂ (ξ ) =

´
Rn f (x)e−2πix·ξ dx.

In this paper we are concerned with maximal operators formed by dila-
tions of bilinear multiplier operators of the form

Tm( f ,g)(x) = sup
t>0

∣∣∣ˆ
Rn

ˆ
Rn

m(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη

∣∣∣
for all Schwartz functions f and g on Rn. Our main result is the following
theorem, which presents a bilinear analogue of the aforementioned result of
Rubio de Francia.

Theorem 1.1. Let a > n
2 +1. Suppose that m(ξ ,η) ∈C∞(R2n) satisfies

|∂ β m| ≤Cβ |(ξ ,η)|−a

for all |β | ≤ [n
2 ]+2, where [n

2 ] is the integer part of n
2 . Define

St( f ,g)(x) =
ˆ
R2n

m(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη .

Then the bilinear maximal operator defined by

(1) M( f ,g) = sup
t>0
|St( f ,g)|

is bounded from L2(Rn)×L2(Rn) to L1(Rn).

In studying linear and bilinear spherical maximal operators, we often de-
compose the multiplier m = ∑

∞
j=0 m j with m j = mψ j for smooth bumps ψ j

supported in annuli |(ξ ,η)| ≈ 2 j, j ≥ 1 and ψ0 supported in a neighbor-
hood of the origin. We recall the Sobolev space Lr

s of all functions g with
‖(I−∆)s/2g‖Lr < ∞, where ∆ is the usual Laplaciand and s > 0.

Motivated by Hörmander type conditions, we obtain Theorem 1.1 as a
consequence of the following more general result, which is the main contri-
bution of this paper.
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Theorem 1.2. Let λ > 1, 1 < r ≤ 4, s > 2n
r + 1, j ≥ 1. Suppose that for

each j ∈ N, M j(ξ ,η) is a multiplier supported in

{(ξ ,η) ∈ R2n : 2 j−1 ≤ |(ξ ,η)| ≤ 2 j+1},
that satisfies

(2) ‖M j‖Lr
s(R2n) ≤ A2−λ j.

Let

St( f ,g)(x) =
ˆ
R2n

∑
j≥0

M j(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη .

Then the maximal operator

T ( f ,g) = sup
t>0
|St( f ,g)|

is bounded from L2(Rn)×L2(Rn) to L1(Rn) with bound a constant multiple
of A.

We prove Theorem 1.2 in Section 3. Below we derive Theorem 1.1.

Proof of Theorem 1.1 assuming Theorem 1.2. We fix a smooth function ϕ̂

supported in B(0,2) whose value is 1 in the unit ball, and define

ψ̂(·) = ϕ̂(2−1·)− ϕ̂(·)
and

m j(ξ ,η) = m(ξ ,η)ψ̂(2− j(ξ ,η))

for j ≥ 1, and m0 = m−∑ j≥1 m j.
Then m0 is a compactly supported smooth function, so the corresponding

bilinear maximal operator

T ∗m0
( f ,g)(x) = sup

t>0

∣∣∣ˆ
R2n

m0(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη

∣∣∣
is bounded by CM( f )M(g), where M is the Hardy-Littlewood maximal
function. So T0 is bounded from Lp1(Rn)× Lp2(Rn) to Lp(Rn) for all
1 < p1, p2 < ∞ and 1

p = 1
p1
+ 1

p2
.

Let r = 4, then ‖m j‖L4
s
≤ C2− ja2 jn/2. Hence m j satisfies conditions of

Theorem 1.2 with the decay λ = a− n
2 > 1. Theorem 1.2 then implies that

the bilinear maximal operator (1) is bounded from L2×L2 to L1. �

As an application of Theorem 1.1, we improve the known results con-
cerning the boundedness of the bilinear spherical maximal operator. It was
shown in [1] that this operator is bounded from L2(Rn)×L2(Rn) to L1(Rn)
for n≥ 8. Here we reduce the dimension restriction to n≥ 4.
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Theorem 1.3. Let mα(ξ ,η) = Jn+α−1(2π|ξ ,η |)
|(ξ ,η)|n+α−1 for α ∈ R, then the bilinear

maximal operator Mα defined by

Mα( f ,g) = sup
t>0

∣∣∣∣¨
R2n

mα(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η) dξ dη

∣∣∣∣
is bounded from L2×L2 to L1 when n > 3−2α .

In particular, for α = 0, the bilinear spherical maximal operator

(3) M0( f ,g) = sup
t>0

∣∣∣∣ˆ
S2n−1

f (x− tθ)g(x− tφ)dσ(θ ,φ)

∣∣∣∣
is bounded from L2(R)×L2(R) to L1(R) when n≥ 4.

Proof. The function mα satisfies the conditions of Theorem 1.1 with a =
n+α − 1

2 . Hence when n > 3− 2α , we obtain the L2×L2 → L1 bound-
edness of Mα . Now recall that the (2n− 1)-dimensional surface measure
σ satisfies d̂σ = m0, i.e., mα with α = 0. Hence the bilinear spherical
maximal operator (3) is bounded from L2(Rn)× L2(Rn) to L1(Rn) when
n≥ 4. �

It was pointed out in [1] that L2×L2→ L1 boundedness fails in dimen-
sion n = 1. As of this writing, we are uncertain about the behavior of this
operator in dimensions n = 2,3.

We discuss another application of Theorem 1.2 concerning the bilinear
maximal Bochner-Riesz means in Section 4.

2. WAVELET DECOMPOSITION

We use the wavelet decomposition of multipliers as in [15]. So we need
to introduce the tensor type wavelets due to [9], and the exact form we use
here can be found in [32].

Lemma 2.1 ([32, Section 1.7.3]). For any fixed k ∈ N there exist real com-
pactly supported functions ψF ,ψM ∈ Ck(R), which satisfy that ‖ψF‖L2(R) =

‖ψM‖L2(R) = 1 and
´
R xαψM(x)dx = 0 for 0 ≤ α ≤ k, such that, if ΨG is

defined by
Ψ

G(~x) = ψG1(x1) · · ·ψG2n(x2n)

for G = (G1, . . . ,G2n) in the set

I :=
{
(G1, . . . ,G2n) : Gi ∈ {F,M}

}
,

then the family of functions⋃
~µ∈Z2n

[{
Ψ

(F,...,F)(~x−~µ)
}
∪

∞⋃
γ=0

{
2γn

Ψ
G(2γ~x−~µ) : G∈ I \{(F, . . . ,F)}

}]
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forms an orthonormal basis of L2(R2n), where~x = (x1, . . . ,x2n).

For simplicity, we use often below ω(ξ ,η) = ωk,l(ξ ,η) to denote the
wavelet 2γnΨG(2γ(ξ ,η)− (k, l)) when the dilation factor γ is fixed. More-
over we may write ωk,l(ξ ,η) = ω1,k(ξ )ω2,l(η), where

(4) ω1,k(ξ ) = 2γn/2
ψG1(2

γ
ξ1− k1) · · ·ψGn(2

γ
ξn− kn)

and ω2,l(η) is defined in an obvious similar way. For a good function m,
we denote by ak,l as the inner product 〈m,ωk,l〉 of m and ωk,l .

Let Fs
r,q(R2n) and f s

r,q be the Triebel-Lizorkin spaces of functions and
sequences, respectively; see [13, Sections 2.2 and 2.3]. To characterize
general function spaces, we need the following lemma.

Lemma 2.2 ([32, Theorem 1.64]). Let 0 < r < ∞, 0 < q ≤ ∞, s ∈ R, and
for γ ∈N and~µ ∈N2n let χγ~µ be the characteristic function of the cube Qγ~µ

centered at 2−γ~µ with length 21−γ . For a sequence η = {ηγ,G
~µ
} define the

norm
‖η | f s

r,q‖=
∥∥∥( ∑

γ,G,~µ

2γsq|ηγ,G
~µ

χγ~µ(·)|q)1/q
∥∥∥

Lr(R2n)
.

Let N 3 k > max{s, 4n
min(r,q) + n− s}. Let Ψ

γ,G
~µ

be the 2n-dimensional

Daubechies wavelet with smoothness k as in Lemma 2.1. Let m ∈ S ′(R2n).
Then m ∈ Fs

r,q(R2n) if and only if it can be represented as

m = ∑
γ,G,~µ

η
γ,G
~µ

2−γn
Ψ

γ,G
~µ

with ‖η | f s
rq‖< ∞ with unconditional convergence in S ′(Rn). Furthermore

this representation is unique,

η
γ,G
~µ

= 2γn〈m,Ψ
γ,G
~µ
〉,

and
I : m→

{
2γn〈m,Ψ

γ,G
~µ
〉
}

is an isomorphism from Fs
r,q(R2n) onto f s

r,q.

We now return the multipliers considering their wavelet decompositions.
Before doing so, we make some comments. The functions ψF and ψM
have compact supports, and all elements in a fixed level, i.e., of the same
dilation factor γ , in the basis come from translations of finitely many prod-
ucts, so their supports have finite overlaps. Consequently we can classify
the elements in the basis into finitely many classes so that all elements in
the same level in each class have distant supports, which means that if
ω and ω ′ are in the same class with the same dilation parameter γ , then
5 supp ω ∩ 5 supp ω ′ = /0, where 5 supp ω = B(c0,5d) with c0 inside the
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support of ω and d the diameter of the support of ω . So, from now on, we
will assume that the supports of ω’s related to a given dilation factor γ are
far disjoint.

For the multiplier M j in Theorem 1.2, we have a wavelet decomposition
using Lemma 2.2, i.e.

(5) M j = ∑aωω,

where the summation is over all ω = Ψ
γ,G
~µ

in the orthonormal basis de-
scribed in Lemma 2.1, the order of cancellations of ψM is M = 4n+6, and
aω = 〈M j,ω〉.

Concerning the size of aω = ak,l , we have the following estimate.

Corollary 2.3. The coefficient aω in (5) related to ω with dilation γ is

bounded by C2− jλ 2−(s+n−2n
r )γ .

Proof. Since Fs
r,2(R

2n) = Lr
s(R2n), we have∥∥∥∥(∑

k,l
22γs|2γnak,lχQγ,k,l |

2
)1/2

∥∥∥∥
Lr
≤C‖M j‖Lr

s ,

by Lemma 2.2, where Qγ,k,l is the cube centered at 2−γ(k, l) with length
21−γ . Take just one term on the left hand side, and notice that |Qγ,k,l| ∼
2−2nγ , then

|ak,l| ≤CA2− jλ 2−(s+n)γ22nγ/r ≤CA2− jλ 2−γ(s+n−2n
r ).

�

With the wavelet decompositions in hand, we are able to prove Theo-
rem 1.2. The proof is inspired by [14] and the square function technique
(see [5] and [28]). We control

(6) Tj = sup
t>0

∣∣∣∣¨
R2n

M j(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη

∣∣∣∣
by two integrals with the diagonal and the off-diagonal parts. For the di-
agonal part we have just one term, which can be handled using product
wavelets. For the off-diagonal parts we introduce two square operators with
each one bounded by a product of the Hardy-Littlewood maximal function
and a linear operator bounded on L2(Rn).

We need to decompose M j further. Take N to be a fixed large enough
number so that N/10 is greater than d, the diameters of the support of ω

with dilation factor γ = 0. We write ω(ξ ,η) = ω~µ(ξ ,η) = ω1,k(ξ )ω2,l(η),
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where ~µ = (k, l) with k, l ∈ Zn, and denote the corresponding coefficient
〈ωk,l,M j〉 by ak,l . We define

(7) M1
j = ∑

γ≥0
M1

j,γ = ∑
γ

∑
|k|≥N

∑
|l|≥N

ak,lω1,kω2,l

(8) M2
j = ∑

γ≥0
M2

j,γ = ∑
γ

∑
k

∑
|l|≤N

ak,lω1,kω2,l

(9) M3
j = ∑

γ≥0
M3

j,γ = ∑
γ

∑
|k|≤N

∑
|l|≥N

ak,lω1,kω2,l.

Here M1
j is the diagonal part such that the support of each level is away from

both ξ and η axes, M2
j is the off-diagonal part with each level’s support near

the ξ axis, and the support of each level of M3
j is near the η axis.

Remark 1. This decomposition is more delicate than that in [1]. and allows
us to handle more singular operators. Actually for each fix γ , the supports
of the wavelets in M2

j related to γ are contained in {(ξ ,η) : |η | ≤ Nd2−γ},
while the corresponding part in [1] is contained in {(ξ ,η) : |η | ≤ 2 jε}.

Corresponding to Mi
j,γ , i = 1,2,3, we define

Bi
j,γ,t( f ,g)(x) =

¨
R2n

Mi
j,γ(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη .

We can define B j,γ,t in a similar way and B j,γ,t( f ,g)(x)=∑
3
i=1 Bi

j,γ,t( f ,g)(x).
Moreover we can define T i

j,γ in the way similar to (6) so that Tj =∑
3
i=1 ∑γ T i

j,γ .

3. PROOF OF THEOREM 1.2

For f ,g∈ S(Rn), using the fundamental theorem of Calculus, we rewrite

B1
j,γ,t( f ,g)(x)

=

¨
R2n

M1
j,γ(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη

=

ˆ t

0

¨
R2n

(sξ ,sη) ·∇M1
j,γ(sξ ,sη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη

ds
s
,

where the existence of ∇M1
j,γ is guaranteed by that all components in M1

j,γ
are contained in the same level.

Define the operator related to (sξ ,sη) ·∇M1
j,γ(sξ ,sη) as

B̃1
j,γ,s( f ,g)(x) =

¨
R2n

(sξ ,sη) ·∇M1
j,γ(sξ ,sη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη .
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Then we have the pointwise estimate

(10) T 1
j,γ( f ,g)(x) = sup

t>0
|B1

j,γ,t( f ,g)(x)| ≤
ˆ

∞

0
|B̃1

j,γ,t( f ,g)(x)|dt
t

We now turn to the study of the boundedness of B̃1
j,γ,t . The basic idea is

the observation that when r ∈ (1,4), [14, Remark 2] shows that whenever
σ is supported in B(0,R) we have

‖Tσ ( f ,g)‖L2×L2→L1 ≤C‖σ‖Lr
s

with C independent of R.
To make this argument rigorous, in the case t = 1, we have the following

estimate, whose proof can be found in the Appendix (Section 5).

Proposition 3.1. Let E = {ξ ∈ Rn : C2−γ ≤ |ξ | ≤ 2 j}. Then we have

(11) ‖B̃1
j,γ,1( f ,g)‖L1 ≤CAC( j,γ)‖ f̂ χE‖L2‖ĝχE‖L2,

with

C( j,γ) = n( j+ γ)2− j(λ−1)2γ(1+n
2−s) when r = 4

C( j,γ) = 2− j(λ−1)2γ(1+2n
r −s) when 1 < r < 4.

In both cases we have good decay in j.

Corollary 3.2. For the diagonal part we have

‖T 1
j,γ( f ,g)‖L1 ≤CAC( j,γ)( j+ γ)‖ f‖L2‖g‖L2.

Proof. From (10) we know that

‖T 1
j,γ( f ,g)‖L1 ≤

ˆ
∞

0
‖B̃1

j,γ,t( f ,g)‖L1
dt
t
=

ˆ
∞

0
‖B̃1

j,γ,1( ft ,gt)‖L1
dt
t
,

where f̂t(ξ ) = t−n/2 f̂ (ξ/t), and ĝt(ξ ) = t−n/2ĝ(ξ/t). Applying Proposi-
tion 3.1, the last integral is dominated by

CA
ˆ

∞

0
C( j,γ)‖ f̂t χE‖L2‖ĝt χE‖L2

dt
t

≤CC( j,γ)
(ˆ

Rn

ˆ
∞

0
| f̂t χE |2

dt
t

dξ

)1/2(ˆ
Rn

ˆ
∞

0
|ĝt χE |2

dt
t

dξ

)1/2
.

The double integral involving ft is bounded by
´
| f̂ (ξ )|2

´ 2 j/|ξ |
C2−γ/|ξ |

dt
t dξ ,

which is less than C( j+γ)‖ f‖2
L2 . Hence the last expression is controlled by

CAC( j,γ)( j+ γ)‖ f‖L2‖g‖L2 . �
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We next deal with the off-diagonal parts. More specifically, we consider
B2

j,γ,t , since the analysis of B3
j,γ,t is similar in view of symmetry. Recall that

B2
j,γ,t =

¨
R2n

M2
j,γ(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη .

We denote (ξ ,η)·(∇M2
j,γ)(ξ ,η) by M̃2

j,γ(ξ ,η). Then similar to B2
j,t( f ,g)(x)

we define

B̃2
j,γ,t( f ,g)(x) =

¨
R2n

M̃2
j,γ(tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη .

With these notations, by the fundamental theorem of Calculus, we have

(B2
j,γ,t( f ,g)(x))2 = 2

ˆ t

0
B2

j,γ,s( f ,g)(x)s
dB2

j,γ,s( f ,g)(x)

ds
ds
s

≤ 2
ˆ

∞

0
|B2

j,γ,s( f ,g)(x)||B̃2
j,γ,s( f ,g)(x)|ds

s

≤ 2G j,γ( f ,g)(x)G̃ j,γ( f ,g)(x),

where we set

G j,γ( f ,g)(x) =
(ˆ

∞

0
|B2

j,γ,s( f ,g)(x)|2 ds
s

)1/2

G̃ j,γ( f ,g)(x) =
(ˆ

∞

0
|B̃2

j,γ,s( f ,g)(x)|2 ds
s

)1/2

.

These g-functions are bounded from L2× L2 to L1 with good decay in j.
Indeed, we have the following.

Lemma 3.3. For any ε > 0 there exists a constant Cε independent of j such
that for all f ,g ∈ S(Rn),

‖G j,γ( f ,g)‖L1 ≤CεA2− jλ 2(n+1)γ‖ f‖L2‖g‖L2

and
‖G̃ j,γ( f ,g)‖L1 ≤CεA2− j(λ−1)2(n+1)γ‖ f‖L2‖g‖L2.

The proof of this lemma is inspired by [15].

Proof. We will focus on G̃ j,γ first. For G̃ j,γ we need to consider two typical
cases, the derivative falling on ξ and the derivative falling on η .

Let us consider the multiplier

ξ1∂ξ1
M2

j,γ = ∑
k,l

ak,lvk(ξ )ω2,l(η)

with vk(ξ ) = ξ1∂ξ1
ω1,k(ξ ). Using (4) we observe that

|vk(ξ )| ≤C2 j2γn/22γ =C2 j2γ(n+2)/2.
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The g-function related to ξ1∂ξ1
M2

j,γ is denoted by G̃1
j,γ( f ,g). By the defini-

tion (8), for a fixed γ at most N of ω2,l are involved, so we can consider a
single fixed l. Observe that¨

R2n
∑
k

ak,lvk(ξ )ω2,l(η) f̂ (ξ )ĝ(η)e2πix·(ξ ,η)dξ dη

=‖a‖`∞2γ(n+2)/22 j
(ˆ

Rn
ω2,l(η)ĝ(η)e2πix·ηdη

)
ˆ
Rn

∑k ak,lvk(ξ )

‖a‖∞2γ(n+2)/22 j
f̂ (ξ )e2πix·ξ dξ .

By |vk| ≤C2γ(n+2)/22 j, |ak,l| ≤ ‖a‖`∞ , and the disjointness of the supports
of vk, we know that σ(ξ ) := (∑k ak,lvk(ξ ))/(‖a‖`∞2γ(n+2)/22 j) is a com-
pactly supported bounded function. Hence the bilinear operator related to
the multiplier ∑k ak,lvk(ξ )ω2,l(η) is pointwise bounded by

(12) C‖a‖`∞2γ(n+1)2 jM(g)(x)Tσ ( f )(x),

where Tσ ( f ) satisfies that ‖Tσ ( f )‖L2 ≤C‖ f̂ χF‖L2 with

F = {ξ ∈ Rn : 2 j−1 ≤ |ξ | ≤ 2 j+1}.

The operator G̃1
j,γ is then bounded from L2× L2 to L1. Indeed we can

estimate it by a standard dilation argument as follows. Setting f̂s(ξ ) =

s−n/2 f̂ (ξ/s), and ĝs(ξ ) = s−n/2ĝ(ξ/s), we haveˆ
Rn

G̃1
j,γ( f ,g)(x)dx

=

ˆ
Rn

[ˆ
∞

0

∣∣∣¨
R2n

∑
k,l

ak,lvk(sξ )ω2,l(sη) f̂ (ξ )ĝ(η)e2πix·(ξ ,η)dξ dη

∣∣∣2 ds
s

] 1
2

dx

=

ˆ
Rn

[ˆ
∞

0

∣∣∣¨
R2n

∑
k,l

ak,lvk(ξ )ω2,l(η) f̂s(ξ )ĝs(η)e2πi x
s ·(ξ ,η)dξ dη

sn

∣∣∣2 ds
s

] 1
2

dx.

Since there are only finitely many l in the sum above, we can use the point-
wise estimate (12) to estimate the last displayed expression by

C‖a‖`∞2 j2(n+1)γ
ˆ
Rn

(ˆ ∞

0

∣∣∣s−n/2M(g)(x)Tσ ( fs)(s−1x)
∣∣∣2 ds

s

)1/2
dx

≤C‖a‖`∞2 j2(n+1)γ‖M(g)‖L2

(ˆ
∞

0

ˆ
Rn

s−n| f̂ (ξ/s)|2χF(ξ )dξ
ds
s

) 1
2

≤C‖a‖`∞2 j2(n+1)γ‖g‖L2

(ˆ
Rn
| f̂ (ξ )|2

ˆ (2 j+1)/|ξ |

(2 j−1)/|ξ |

ds
s

dξ

) 1
2
.
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The integral with respect to s is log 2 j+1

2 j−1 ≤C. This, combined with the bound

of ‖a‖`∞ ≤ CA2− jλ 2−(s+n−2n
r )γ obtained in Corollary 2.3, shows that the

last displayed expression is smaller than

(13) C‖a‖`∞2 j2(n+1)γ‖g‖L2‖ f‖L2 ≤CA2− j(λ−1)2−γ(s−2n
r −1)‖g‖L2‖ f‖L2 .

When the derivative falls on η , for example we have differentiation with
respect to η1, using the notation vl(η) = η1∂η1ω2,l(η) we have a similar
representation¨

R2n
∑
k

ak,lω1,k(ξ )vl(η) f̂ (ξ )ĝ(η)e2πix·(ξ ,η)dξ dη

=‖a‖`∞2γn/2
(ˆ

Rn
vl(η)ĝ(η)e2πix·ηdη

)ˆ
Rn

∑k ak,lω1,k(ξ )

‖a‖`∞2γn/2 f̂ (ξ )e2πix·ξ dξ .

The integral in the parenthesis in the last line is dominated by 2γn/2M(g)(x)
as both ∂1(ω2,l)

∨(x)e2πix·l and (ω2,l)
∨(x)l1e2πix·l are Schwartz functions,

and the number of the second type of functions is finite because |l| ≤N. The
bilinear operator related to the multiplier ∑k ak,lω1,k(ξ )vl(η) is therefore
bounded by

C‖a‖`∞2γnM(g)(x)Tσ ′( f )(x),

where Tσ ′ satisfies the same property as Tσ . For the L1 norm of the g-
function G̃2

j,γ related to the multiplier ∑k ak,lω1,k(ξ )vl(η) we apply an ar-
gument similar to that used for ‖G̃1

j,γ‖L1 . We obtain

(14) ‖G̃2
j,γ‖L1 ≤CA2− jλ 2−γ(s−2n

r )‖g‖L2‖ f‖L2.

This estimate and (13) show that

‖G̃ j,γ( f ,g)‖L1 ≤CA2− j(λ−1)2−γ(s−2n
r −1)‖ f‖L2‖g‖L2 .

For G j,γ( f ,g) an analogous, but simpler argument, applied to the stan-
dard representation ∑ak,lω1,k(ξ )ω2,l(η) yields

‖G j,γ( f ,g)‖L1 ≤CA2− jλ 2−γ(s−2n
r −1)‖ f‖L2‖g‖L2.

The additional decay of 2− j comes from the fact that in the multiplier of
B2

j,γ,s we miss the term (ξ ,η), which is controlled by 2 j. �

Corollary 3.4. For the off-diagonal part the estimate below holds:

(15) ‖T 2
j,γ( f ,g)‖L1 ≤CA2− j(λ−1/2)2−γ(s−2n

r −1)‖ f‖L2‖g‖L2.
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Proof. By the calculation before Lemma 3.3 we have the pointwise control

T 2
j,γ( f ,g)(x)≤

√
2(G j,γ( f ,g)(x)G̃ j,γ( f ,g)(x))1/2,

which, combined with Lemma 3.3, implies that

‖T 2
j ( f ,g)‖L1 ≤

∥∥√2
(
G j,γ( f ,g)G̃ j,γ( f ,g)

)1/2∥∥
L1

≤C(‖G j,γ( f ,g)‖L1‖G̃ j,γ( f ,g)‖L1)1/2

≤CA
(

2− jλ 2− j(λ−1)2−2γ(s−2n
r −1)‖ f‖2

L2‖g‖2
L2

)1/2

=CA2− j(λ−1/2)2−γ(s−2n
r −1)‖ f‖L2‖g‖L2.

In this case we have nice decay in j for T 2
j,γ since λ > 1 > 1/2. �

We collect the known results to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. We observe that

T ( f ,g)(x)≤
∞

∑
j=0

∑
γ

|Tj,γ( f ,g)(x)|.

It is straightforward to verify that

∑
γ

C( j,γ)( j+ γ)≤Cε2− j(λ−1−ε) ≤Cε2− j(λ−1)/2,

if we choose ε small enough. So we obtain

(16) ∑
j
∑
γ

‖T 1
j,γ( f ,g)‖L1 ≤∑

j
CA2− j λ−1

2 ‖ f‖L2‖g‖L2 ≤CA‖ f‖L2‖g‖L2.

This concludes the argument of the diagonal part. A similar argument using
(15) show the boundedness of the off-diagonal part. Hence we deduce the
conclusion of Theorem 1.2. �

4. APPLICATIONS TO BILINEAR MAXIMAL BOCHNER-RIESZ

Theorem 1.2 can also be used to study the boundedness of the maximal
bilinear Bochner-Riesz means. These are the means

(17) Aλ
t ( f ,g)(x) =

¨
R2n

f̂ (ξ )ĝ(η)
(
1−|tξ |2−|tη |2

)λ

+
e2πix·(ξ+η)dξ dη ,

which coincide with Bλ

1/t( f⊗g)(x,x) with Bλ

1/t the linear Bochner-Riesz op-

erator on R2n and x ∈Rn. For test functions we should have Aλ
t ( f ,g)→ f g

as t→ 0 in the Lp or in the pointwise sense. [17, 3, 22] have proved positive
results for λ = 0 and λ > 0 respectively, concerning their Lp convergence.

In this section, we are concerned with the pointwise convergence of the
means (17), in particular with the boundedness of the maximal bilinear
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Bochner-Riesz operator, which of course implies the boundedness of the
bilinear Bochner-Riesz operators in the same range.

The bilinear maximal Bochner-Riesz operator for λ > 0 is defined as

(18) T λ
∗ ( f ,g)(x) = sup

t>0

∣∣∣ˆ
Rn

ˆ
Rn

mλ (tξ , tη) f̂ (ξ )ĝ(η)e2πix·(ξ+η)dξ dη

∣∣∣,
where mλ (ξ ,η) = (1−|ξ |2−|η |2)λ

+, which is equal to (1−(|ξ |2+ |η |2))λ

when |(ξ ,η)| ≤ 1 and 0 when |(ξ ,η)|> 1.
Our main theorem concerning the boundedness of bilinear maximal Bochner-

Riesz means is as follows:

Theorem 4.1. When λ > 2n+3
4 , for T λ

∗ in (18) we have that

‖T λ
∗ ( f ,g)‖L1 ≤C‖ f‖L2‖g‖L2.

We fix a nonnegative smooth function ϕ(s) supported in [−3
4 ,

3
4 ] and a

smooth function ψ supported in [1
8 ,

5
8 ] such that ∑

∞
j=0 ψ j(1− s) = 1 for s ∈

[0,1), where ψ j(s) = ψ(2 js) for j ≥ 1 and ψ0 = ϕ .
We decompose the multiplier m(ξ ,η) = (1− (|ξ |2 + |η |2))λ

+ smoothly
as m = ∑ j≥0 m j, where

m j(ξ ,η) = m(ξ ,η)ψ j(|(ξ ,η)|)

is supported in an annulus of the form

{(ξ ,η) ∈ R2n : 1−2− j ≤ |(ξ ,η)| ≤ 1−2− j−2}

for j ≥ 1 and m0 is supported in a ball of radius 3/4 centered at the origin.
If

(19) Tj( f ,g)(x) = sup
t>0

∣∣∣∣ˆ
Rn

ˆ
Rn

f̂ (ξ )ĝ(η)m j(tξ , tη)e2πix·(ξ+η)dξ dη

∣∣∣∣,
then

T λ
∗ ( f ,g)(x)≤

∞

∑
j=0

Tj( f ,g)(x).

The following are straighforward facts about T λ
∗ and Tj. Let ‖T‖X×Y→Z

denote the norm of T from X×Y to Z.

Proposition 4.2. Assume 1 < p1, p2 ≤ ∞, and 1/p = 1/p1 + 1/p2. Then
for λ > n− 1/2, there exists a finite constant C = C(p1, p2) such that
‖T∗‖Lp1×Lp2→Lp ≤C. For any fixed j, there exists a finite constant C j(p1, p2)
such that ‖Tj‖Lp1×Lp2→Lp ≤C j(p1, p2).
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Proof. Let us consider the kernel K(y,z) = m∨(y,z) of Aλ
1 defined in (17),

which satisfies that |K(y,z)| ≤C(1+ |y|+ |z|)−(n+λ+1/2) (see, for example,
[12]), hence for λ > n−1/2, we have

|At( f ,g)(x)|=
∣∣∣∣ˆ

R2n
t−2nK(

x− y
t

,
x− z

t
) f (y)g(z)dydz

∣∣∣∣
≤ C(ϕt ∗ | f |)(x)(ϕt ∗ |g|)(x)
≤ CM( f )(x)M(g)(x),

where M is the Hardy-Littlewood maximal function, and ϕt(y) = t−nϕ(y/t)
with ϕ(y) = (1+ |y|)−(n+λ+1/2)/2, which is integrable when λ > n− 1/2.
Then T∗( f ,g)(x) ≤ CM( f )(x)M(g)(x), which implies that ‖T∗( f ,g)‖Lp ≤
C(p1, p2)‖ f‖Lp1‖g‖Lp2 for 1 < p1, p2 ≤∞ with 1/p = 1/p1+1/p2 in view
of the boundedness of the Hardy-Littlewood maximal function.

We observe that each m j is smooth and compactly supported, hence for
each j a similar argument yields ‖Tj‖Lp1×Lp2→Lp ≤C j(p1, p2)< ∞. �

With the aid of the preceding decomposition and the boundedness of Tj,
the study of the boundedness of T∗ is reduced to the decay of C j in j.

We now go back to the multipliers and will apply Theorem 1.2. For this
purpose we should study kinds of norms of m j.

Lemma 4.3. There exists a constant C such that

‖m j‖L2 ≤C2− j(λ+1/2),

and for any multiindex α ,

(20) ‖∂ αm j‖L∞ ≤Cα2− j(λ−|α|).

Proof. A change of variables using polar coordinates implies that

‖m j‖L2 =
(ˆ

R2n
|m j(ξ ,η)|2dξ dη

)1/2

≤C
(ˆ 1−2− j−2

1−2− j
(1− r2)2λ r2n−1dr

)1/2

≤C(2−2 jλ 2− j)1/2

=C2− j(λ+1/2)

To estimate the α-th derivatives, we use the Leibniz’s rule to write

∂
αm j(ξ ,η) = ∑

α1+α2=α

Cα1∂
α1m(ξ ,η)∂ α2ψ j(|(ξ ,η)|).

Noticing that |∂ α1m(ξ ,η)| ≤ C2− j(λ−|α1|) and ∂ α2ψ j(|(ξ ,η)|) ≤ C2 j|α2|,
we derive the bound ∂ αm j(ξ ,η) by C2− j(λ−|α|). �
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The multiplier m j is not supported in the annulus of radius 2 j and one
can verify that its Sobolev norm is not as good as would wish. Actually
the norm increases as the number of derivatives is large. So a dilation is
necessary to apply Theorem 1.2.

Let us define M j(ξ ,η) = m j(2− jξ ,2− jη), which is supported in the an-
nulus {(ξ ,η) ∈ R2n : 2 j−1 ≤ |(ξ ,η)| ≤ 2 j−1/4}, whose width is 3/4.
Based on Lemma 4.3, we have the following corollary.

Corollary 4.4. The multipliers M j(ξ ,η) = m j(2− jξ ,2− jη) satisfy

‖∂ αM j‖L∞ ≤C2− jλ for all multiindex α,

∇m j(ξ ,η) = 2 j(∇M j)(2 j
ξ ,2 j

η),

and
‖M j‖Lr

s ≤C2− jλ 2 j(2n−1)/r,

where ‖M j‖Lr
s = ‖(I−∆)s/2M j‖Lr is the Sobolev norm of M j.

Proof. We have

|∂ αM j| ≤ 2− j|α||(∂ αm j)(2− j
ξ ,2− j

η)| ≤C2− j|α|− j(λ−|α|) =C2− jλ ,

using (20). The verification of the last identity is straightforward once we
notice that M j is supported in the annulus

{(ξ ,η) : 2 j−4≤ |(ξ ,η)| ≤ 2 j−1}

whose volume is about 2 j(2n−1). �

Proof of Theorem 4.1. It is easy to verify that Tj in (19) stays the same if we
replace m j by M j. We apply Theorem 1.2 to M j with r = 4, then it follows
from this and Proposition 4.2 that T∗ is bounded from L2×L2 to L1 when
λ > 2n+3

4 . �

Using complex interpolation between Theorem 4.1 and Proposition 19
we can obtain a larger range of boundedness, which we will not pursue
here.

As a corollary of Theorem 4.1, we obtain the pointwise convergence, as
t→ 0, of the operator Aλ

t ( f ,g)(x), which we denote by At( f ,g)(x) as well.

Proposition 4.5. Suppose λ > 2n+3
4 , then for f ∈ L2 and g ∈ L2 we have

(21) lim
t→0

At( f ,g)(x)→ f (x)g(x) a.e..

The proof of this proposition is similar to the linear case, but we sketch
it here for completeness.
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Proof. It is easy to establish (21) when both f and g are Schwartz functions.
To prove (21) for f ∈ L2 and g ∈ L2 it suffices to show that for any given
δ > 0 the set E f ,g(δ ) = {y ∈ Rn : O f ,g(y)> δ} has measure 0, where

O f ,g(y) = limsup
θ→0

limsup
ε→0

∣∣Aθ ( f ,g)(y)−Aε( f ,g)(y)
∣∣.

For any positive number η smaller than ‖ f‖L2, ‖g‖L2 , there exist Schwartz
functions f1 = f − a and g1 = g− b such that both ‖a‖L2 , and ‖b‖L2 are
bounded by η . We observe that

|E f ,g(δ )| ≤ |E f1,g1(δ/4)|+ |Ea,g1(δ/4)|+ |E f1,b(δ/4)|+ |Ea,b(δ/4)|.

Notice that |E f1,g1(δ/4)| = 0 since (21) is valid for f1,g1. To control the
remaining three terms, we observe that, for instance,

|Ea,g1(δ/4)| ≤ |{y : 2T∗(a,g1)(y)> δ/4}|

≤ C
‖a‖L2‖g1‖L2

δ

≤ C
η‖g‖L2

δ
,

where the last term goes to 0 as η → 0 since g and δ are fixed. �

5. APPENDIX: PROOF OF PROPOSITION 3.1

The proof of this proposition is essentially contained in [14, Lemma 6],
but for the sake of completeness we include it, ignoring some routine cal-
culations that can be found in [14].

Proof of Proposition 3.1. Notice that in the support of ∇M1
j,γ(ξ ,η), we have

ξ ∈ E and η ∈ E, hence we may alway assume that f̂ = f̂ χE and ĝ = ĝχE .
In other words, it suffices to establish (11) without χE .

It suffices to consider, for example, the typical term ξ1∂ξ1
M1

j,γ(ξ ,η),
which is ∑k ∑l ak,l∂ξ1

ω1,k(ξ )ξ1ω2,l(η) for allowed k, l in M1
j,γ . We rewrite

this as

(22) 2 j2γ
∑
k

∑
l

bk,lω̃1,k(ξ )ω̃2,l(η),

where ω̃1,k(ξ )= 2− j∂ξ1
ω1,k(ξ )ξ1/‖∂ξ1

ω1,k(ξ )‖Lr , ω̃2,l =ω2,l/‖ω2,l‖Lr , and
bk,l = 2−γak,l‖∂ξ1

ω1,k(ξ )‖Lr‖ω2,l‖Lr .
We need some estimates of ω̃1,k which will be useful later. The func-

tion ∂ξ1
ω1,k(ξ ) is of the form 2γ2γn/2ϕ(2γξ ) for a compactly supported

smooth function ϕ , hence ‖∂ξ1
ω1,k(ξ )‖Lr ≈ 2γ(1+n

2−
n
r ). This implies that

‖ω̃1,k‖L∞ ≤C2γn/r since |ξ1| ≤C2 j.
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We have ∥∥∥∥(∑
k,l

2γs|2γnak,lχQγ,k,l |
2)1/2

∥∥∥∥
Lr
≤C‖M j‖Lr

s ,

by Lemma 2.2, where Qγ,k,l is the cube centered at 2−γ(k, l) with length
21−γ . This leads to∥∥∥∥(∑

k,l
2γs|2− j2−γak,l∂ξ1

ω1,k(ξ )ξ1ω2,l(η)|2)1/2
∥∥∥∥

Lr
≤C‖M j‖Lr

s .

Recall that ‖M j‖Lr
s ≤C2− jλ . Then using the disjointness of supports of ωk,l

we obtain further that

B = (∑ |bk,l|r)1/r ≤C2− jλ 2−sγ .

Each ω in level γ is of the form ω = ωkωl with ~µ = (k, l), where k and
l both range over index sets of cardinality at most C2 jn2γn. Moreover we
denote by bkl the coefficient bω , and we define a bilinear multiplier

ςγ = ∑
k∈U1

ω̃k ∑
l∈U2

bklω̃l.

Let A be a number between ‖b‖∞ and B = ‖b‖r. Related to τ ≥ 0 we
define Uτ = {(k, l) : 2−τ−1A ≤ |bk,l| ≤ 2−τA}. Denote by colk = {(k, l) ∈
Uτ : k fixed}. Define

U1
τ = {(k, l) ∈Uτ : #colk ≥ N1},

where N1 is a to be determined number. So U1
τ is a union of long columns.

We denote by P1U1
τ = {k : ∃ l s.t. (k, l) ∈U1

τ }, the projection of U1
τ onto the

k-axis. Then the number of columns is #P1U1
τ ≤ Br(2−τA)−rN−1

1 := N2.
Let U2

τ be the complement of U1
τ in Uτ . Associated to U i

τ we can define
a bilinear multiplier ς i

τ = 2 j2γ
∑(k,l)∈U i

τ
bk,lω̃k,l , and a bilinear operator T

ς i
τ
.

A well-known argument (see, for instance, [15] or [14]) shows that

‖T
ς1

τ
( f ,g)‖L1 ≤C2 j2γN1/2

2 22γn/r2−τA‖ f‖L2‖g‖L2

and
‖T

ς2
τ
( f ,g)‖L1 ≤C2 j2γN1/2

1 22γn/r2−τA‖ f‖L2‖g‖L2.

Identifying N1 and N2, and taking A = B in our situation, we obtain that
N1 = N2 = C2τr/2, which implies that the ‖T

ς i
τ
‖L2×L2→L1 is bounded by

C2− j(λ−1)2−γ(s−2n
r −1)2−τ(1− r

4 ).
Summing over τ , we obtain the claimed bound for r < 4.
For the case r = 4, we may assume that τ ≤ τm = 2( j + γ)n/4 since

N2 = 2τr/2 ≤ 2( j+γ)n with r = 4. Actually we define

Uτm = {(k, l) : |bk,l| ≤ 2−τmA}.
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Then the previous argument gives the bound C( j+ γ)n2− j(λ−1)2−γ(s−n
2−1)

when r = 4. �

A lemma concerning the decay of the coefficients related to the orthonor-
mal basis in Lemma 2.1 is given below.

Lemma 5.1 ([15]). Suppose ς(ξ ,η) defined on R2n satisfies that there ex-
ists a constant CM such that ‖∂ α(ς(ξ ,η))‖L∞ ≤ CM for each multiindex
|α| ≤M, where M is the number of vanishing moments of ψM. Then for any
nonnegative integer γ ∈ N0 = {n ∈ Z : n≥ 0} we have

(23) |〈Ψγ,G
~µ

,ς〉| ≤CCM2−(M+n)γ .

This lemma can be proved by applying Appendix B.2 in [13], and we
delete the details which can be found in [15].

By this lemma we have a better decay in j for bk,l compared with Corol-
lary 2.3, namely |bk,l| ≤C2− ja2−γ(s+n), using |∂ β m| ≤C|(ξ ,η)|−a in The-
orem 1.1 if we assume s number of derivatives. It is natural to conjecture
that this better decay in j can lower the restriction on a. This, unfortunately,
is not true.

As we did before, setting N1 = N2 implies that N1 = 2τr/2. An important
observation is that |bk,l| � B. Actually the smallest τ such that 2−τB ∼
‖bk,l‖`∞ ≤C2− ja2−γ(s+n) is τ0 =

2n j
r +nγ , which means that the summation

in τ starts from τ0 other than 0.
Another observation is that N2 related to τ0 is 2τ0r/2 ∼ 2n j+nγr/2, which

is smaller than 2τmr/2 ∼ 2n j+nγ when r > 2. So for r ∈ (2,4), we take N2 =
2n j+nγ . And the summation in τ consists just one term τ0.

By the calculation in the proof of Proposition 3.1 the norm of Tςγ ∑τ T
ς i

τ
,

which consists of one term with τ = τ0, is bounded by a constant multiple
of 2− j(a−n/2−1)2−γ(s−n/2−1). This provides no new information except for a
bound independent of r, which is natural since there is no r in the conditions
of Theorem 1.1.

So we still have the restriction a > n
2 + 1. It is also easy to verify that

when r = 4 the bound for T
ς i

τ
does not change, so in this case we need

a > n
2 +1 as well.

Remark 2. We use mainly the case r = 4 in applying Proposition 3.1, while
a smaller A, which reduces the number of τ’s involved, does not change the
exponential decay in j at all.

Remark 3. Lemma 5.1 implies also a better decay of the off-diagonal part in
j, namely 2− j(a−1/2), which, however, is useless for us due to the restriction
of the diagonal part.
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[23] C. E. Kenig and E. M. Stein. Multilinear estimates and fractional integration. Math.
Res. Lett. 6 (1999), no. 1, 1–15.

[24] M. Lacey and C. Thiele. Lp estimates on the bilinear Hilbert transform for 2< p<∞.
Ann. of Math. (2) 146 (1997), no. 3, 693–724.

[25] M. Lacey and C. Thiele. On Calderón’s conjecture. Ann. of Math. (2) 149 (1999),
no. 2, 475–496.
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